Theorem Let $R_{\alpha}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ be an irrational rotation.
Then the frost return map on $[0, \alpha]$ is conjugated to $R_{-\gamma}$, where $\gamma=\sigma(\alpha)$ and

$$
G(\alpha)=\frac{1}{\alpha}-\left\lfloor\frac{1}{\alpha}\right\rfloor
$$

6 is called the Gauss map.
$R_{-\gamma}$ is a votatun on $[0,1]$
Conjugated?

it can be defined $6:[-, 1) \backslash Q \rightarrow[0,1] \mathbb{Q}$ $y \longmapsto \frac{1}{y}-\left\lfloor\left.\frac{1}{y} \right\rvert\,\right.$

Proof of the theorem
Define $n=\left\lfloor\frac{1}{\alpha}\right\rfloor$. Since α is irrational,
so is $\frac{1}{\alpha}$, and $n<\frac{1}{\alpha}<n+1$.
Hence, $n<\frac{1}{\alpha} \Rightarrow n \alpha<1$.
Let $\beta=1-n \alpha>0$.
Observe also $(n+1) \alpha>1$
Claim: If F is the first return map

$$
F:[0, \alpha) \rightarrow[0, \alpha) \text {, }
$$

then

$$
F(x)= \begin{cases}R_{\alpha}^{n+1}(x), & 0 \leq x<\beta, \\ R_{\alpha}^{n}(x), & \beta \leq x<\alpha,\end{cases}
$$

Proof of claim: If $\beta \leq x<\alpha$, then

$$
\mathbb{R}_{\alpha}^{n}([x])=[x+n \alpha]
$$

Since $x \geqslant \beta$, then $x+n \alpha \geqslant \beta+n \alpha$ but $\beta=1-n \alpha>0$
So $\quad x+u \alpha \geqslant \beta+n \alpha=(1-n \alpha)+n \alpha=1$
then $\quad x+n \alpha-1 \geqslant 0$
Since $x<\alpha$, then $x+n \alpha<\alpha+n \alpha$

$$
<\alpha+1
$$

So $\quad x+n \alpha-1<\alpha$
Conclusion: $\quad 0<x+n \alpha-1<\alpha$
\& $R^{n}([x])=[x+n \alpha-i]=[x+n \alpha] \in[0, \alpha)$.
θ If $0 \leqslant x<\beta$, then

$$
R_{\alpha}^{n+1}([x])=[x+(n+1) \alpha]
$$

Since $x \geqslant 0$, then $x+(n+1) \alpha \geqslant 0+(n+1) \alpha \geq 0+1$
Since $\quad x<\beta$, then $x+(n+1) \alpha<\beta+(n+1) \alpha$ but $\beta=1-n \alpha>0$
So

$$
\begin{aligned}
x+(n+1) \alpha & <(1-n \alpha)+(n+1) \alpha \\
& <1+\alpha .
\end{aligned}
$$

Therefore

$$
1 \leq x+(n+1) \alpha<1+\alpha
$$

in conclusion,

$$
0 \leq x+(n+1) \alpha-1<\alpha
$$

$\&$

$$
\begin{aligned}
\left.R^{n+1}(\tau \times]\right) & =[x+(n+1) \alpha-1] \\
& =[x+(n+1) \alpha] \in[0, \alpha)
\end{aligned}
$$

(Continuing with the proof of the theorem)
Define $H:[0,1) \rightarrow[0,1)$ by $H(x)=\alpha x$
Note that:

$$
R_{-\gamma}(x)= \begin{cases}x-\gamma+1, & 0 \leq x<\gamma . \\ x-\gamma, & \gamma \leq x<1 .\end{cases}
$$

$$
\begin{gathered}
{[0,1) \xrightarrow{R-\gamma}\left[\begin{array}{l}
{[0,1)} \\
H \\
{[0, \alpha) \xrightarrow[F]{ }} \\
\\
{[0, \alpha)}
\end{array}\right]}
\end{gathered}
$$

If suffices to prove that $H\left(R_{-\gamma}(x)\right)=F(H(x))$ For all x

Proof of this:
Case 1 For $0 \leq x<\gamma$, we want to prove

$$
H\left(R_{-\gamma}^{\prime}(x)\right)=F(H(x))
$$

computation:

$$
\begin{aligned}
L H S & =H(x-\gamma+1)= \\
& =\alpha(x-\gamma+1) \\
& =\alpha x-\alpha \gamma+\alpha \\
& =\alpha x-\alpha\left(\frac{1}{\alpha}-\left\lfloor\frac{1}{\alpha}\right]\right)+\alpha \\
& =\alpha x-1+\left\lfloor\frac{1}{\alpha}\right\rfloor \alpha+\alpha \\
& =\alpha x-1+n \alpha+\alpha \\
& =\alpha x-1+(n+1) \alpha=\alpha x+(n+1) \alpha-1
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\text { RHS }=F(\alpha x), & \text { but } 0 \leq \alpha x
\end{array} \quad \begin{array}{rl}
& \left.\alpha \gamma=\alpha\left(\frac{1}{2}-1 \frac{1}{2}\right)\right) \\
\text { So } & \alpha x
\end{array}\right)
$$

then $F(\alpha x)=\alpha x+(n+1) \alpha-1$
Since $2 H S=$ RHS wearedone with the core 1.

Case 2. Exercise For $r \leqslant x<1$, we want to prove $H\left(R_{-\gamma}(x)\right)=F(H(x))$

Remark: Observe that if $\beta=1-n \alpha$ Solve for α ?

$$
\begin{aligned}
& n \alpha+\beta=1 \\
& \alpha\left(n+\frac{\beta}{\alpha}\right)=1 \\
& \alpha=\frac{1}{n+\frac{\beta}{\alpha}}, \frac{\beta}{\alpha}=\frac{1}{\alpha}-n=6(\alpha) \\
& \alpha=\frac{1}{n+6(\alpha)}
\end{aligned}
$$

Definition $n_{i}=\left\lfloor\frac{1}{6^{i+1}(\alpha)}\right\rfloor$
Exercise Prove by induction, if $\alpha \in(0,1) \backslash Q$ Then $\alpha=\frac{1}{n_{1}+\frac{1}{n_{2}+\frac{1}{n_{3}+\frac{1}{\cdots}}}+\frac{1}{n_{k}+c^{k}(\alpha)}}$ ie $\alpha \in(0,1)$ \& $\alpha \notin Q$.

Definition Therational number

$$
\frac{p_{k}}{q_{k}}=\frac{1}{n_{1}+\frac{1}{n_{2}+\frac{1}{\ddots \frac{1}{n_{k-1}+\frac{1}{n_{k}}}}}}
$$

are called the convergent of α.
Theorem $\frac{p_{k}}{q_{k}} \longrightarrow \alpha$ as $k \rightarrow \infty$
Theorem $\sqrt{\text { Let }} \alpha \in(0,1) \backslash Q$, and $\frac{p_{k}}{q_{k}}$ be a convergentof α. for any fraction $\frac{m}{n}$ such that $0<n<q_{k}$, then

$$
\left|q_{k} \alpha-p_{k}\right|<|n k-m|
$$

moral: q_{k} are the times for rotations of 0 by α, when we get closer than wee have ever been.
Theorem: (Dirichlet Approximation Theorem) Let $\alpha \in[0,1) \backslash Q$, There exists infinitely many fractions $\frac{p}{q}$ such that

$$
|q \alpha-p|<\frac{1}{q} \quad\left(\Leftrightarrow\left|\alpha-\frac{p}{q}\right|<\frac{1}{q^{2}}\right)
$$

Proof: Fix an integer n, and divide $[0,1)$ into n equal pieces

$$
[0,1)=\left[0, \frac{1}{n}\right) \cup\left[\frac{1}{n}, \frac{2}{n}\right) \cup \ldots \cup\left[\frac{n-1}{n}, 1\right)
$$

let $A=\left\{[0], R([0]), \ldots, R^{n}([0])\right\}$
There are $n+1$ elements of A.
Since there are n intervals, there exists two number $0 \leqslant k<l \leqslant n$ such that $R^{k}\left([-0)\right.$ and $R^{2}([0])$ both belong t. the same interval.
Hence, $|k \alpha-l \alpha-P|<\frac{1}{n}$ for some p if $\quad q=k-l$, then

$$
|q \alpha-p|<\frac{1}{n}
$$

and $\quad 1 \leqslant q \leq n$
Thus $\quad|q \alpha-p|<\frac{1}{n} \leqslant \frac{1}{q}$
Exercise: Conclude the Dirichlet approx Theorem

